68 research outputs found

    Migration and habitat use of sea turtles in the Bahamas

    Get PDF
    Objectives: Evaluate movement and distribution patterns of sea turtles in our series of study sites in The Bahamas. This objective includes the questions of where do the turtles come from, how long are they resident in these sites, and where do they go when they leave. Collect data that will allow us to develop techniques to compare habitat quality and to serve as a foundation for studies of the role of green turtles in seagrass ecosystems. Evaluate models for estimating growth rates and carrying capacities for sea turtles based on our data from a long-term study of immature green turtles in the southern Bahamas. (Document has 7 pages.

    Biology of pelagic sea turtles: effects of marine debris

    Get PDF
    Objectives: 1. Quantify the sub-lethal effect of debris ingestion (nutrient dilution) on nutrient gain 2. Model sub-lethal effects of debris ingestion on nutrient intake and growth 3. Evaluation of stress from entanglement on the loggerhead sea turtle 4. Movement patterns and behavior of pelagic-stage loggerheads in the eastern Atlantic 5. Document the genetic relationships of pelagic-stage loggerheads in the eastern Atlantic with rookeries in the southeast US (Document has 14 pages; lists publications resulting from research

    Hawksbill (Eretmochelys imbricata) and Green Turtle (Chelonia mydas) Nesting and Beach Selection at PrĂ­ncipe Island, West Africa

    Get PDF
    Hawksbills (Eretmochelys imbricata) and green turtles (Chelonia mydas) are the predominant nesting sea turtle species on the beaches of Príncipe Island in the Gulf of Guinea. The extent of nesting has been largely unknown, but such information is essential for management and conservation. Our study is the first island-wide nesting assessment. Results from the survey, conducted from 1 December 2009 to 18 January 2010 (during peak nesting season), show that the potential suitable nesting area (10 km) is scattered around the island’s 50 beaches. Sea turtles nested on 32 of the beaches (hawksbills, 20; green turtles, 28) and used 7.5 km of the suitable nesting habitat (hawksbills, 5.8 km; green turtles, 7.0 km). We estimated that 101 (95% CI = 86–118) clutches were deposited by 17-29 hawksbills and 1088 (95% CI = 999–1245) clutches were deposited by 166-429 green turtles on Príncipe from November 2009 to February 2010 (nesting season). Long-term green turtle nest count data collected from 2007/08 to 2015/16 suggest a positive trend. Analyses of clutch densities in relation to beach characteristics suggested that both species preferred areas where human presence is lower, which coincided with the most sheltered areas. These findings should be used to inform coastal planning and minimize impacts on nesting beaches, as Príncipe is currently targeted for tourism development. Overall, results highlight that Príncipe beaches are very important for the conservation of West African hawksbill and green turtle populations.info:eu-repo/semantics/publishedVersio

    Evaluating trends in abundance of immature green turtles, Chelonia mydas, in the Greater Caribbean

    Get PDF
    Many long-lived marine species exhibit life history traits. that make them more vulnerable to overexploitation. Accurate population trend analysis is essential for development and assessment of management plans for these species. However, because many of these species disperse over large geographic areas, have life stages inaccessible to human surveyors, and/or undergo complex developmental migrations, data on trends in abundance are often available for only one stage of the population, usually breeding adults. The green turtle (Chelonia mydas) is one of these long-lived species for which population trends are based almost exclusively on either numbers of females that emerge to nest or numbers of nests deposited each year on geographically restricted beaches. In this study, we generated estimates of annual abundance for juvenile green turtles at two foraging grounds in the Bahamas based on long-term capture-mark-recapture (CMR) studies at Union Creek (24 years) and Conception Creek (13 years), using a two-stage approach. First, we estimated recapture probabilities from CMR data using the Cormack-Jolly-Seber models in the software program MARK; second, we estimated annual abundance of green turtles. at both study sites using the recapture probabilities in a Horvitz-Thompson type estimation procedure. Green turtle abundance did not change significantly in Conception Creek, but, in Union Creek, green turtle abundance had successive phases of significant increase, significant decrease, and stability. These changes in abundance resulted from changes in immigration, not survival or emigration. The trends in abundance on the foraging grounds did not conform to the significantly increasing trend for the major nesting population at Tortuguero, Costa Rica. This disparity highlights the challenges of assessing population-wide trends of green turtles and other long-lived species. The best approach for monitoring population trends may be a combination of (1) extensive surveys to provide data for large-scale trends in relative population abundance, and (2) intensive surveys, using CMR techniques, to estimate absolute abundance and evaluate the demographic processes' driving the trends

    Estimates of survival probabilities for oceanic-stage loggerhead sea turtles (Caretta caretta) in the North Atlantic

    Get PDF
    Estimates of instantaneous mortality rates (Z) and annual apparent survival probabilities (Φ) were generated from catch-curve analyses for oceanic-stage juvenile loggerheads (Caretta caretta) in the waters of the Azores. Two age distributions were analyzed: the “total sample” of 1600 loggerheads primarily captured by sighting and dipnetting from a variety of vessels in the Azores between 1984 and 1995 and the “tuna sample” of 733 loggerheads (a subset of the total sample) captured by sighting and dipnetting from vessels in the commercial tuna fleet in the Azores between 1990 and 1992. Because loggerhead sea turtles begin to emigrate from oceanic to neritic habitats at age 7, the best estimates of instantaneous mortality rate (0.094) and annual survival probability (0.911) not confounded with permanent emigration were generated for age classes 2 through 6. These estimates must be interpreted with caution because of the assumptions upon which catch-curve analyses are based. However, these are the first directly derived estimates of mortality and survival probabilities for oceanic-stage sea turtles. Estimation of survival probabilities was identified as “an immediate and critical requirement” in 2000 by the Turtle Expert Working Group of the U.S. National Marine Fisheries Service

    Home range and habitat use by Kemp's Ridley turtles in West-Central Florida

    Get PDF
    The Kemp's ridley turtle (Lepidochelys kempii) is an endangered species whose recovery depends in part on the identification and protection of required habitats. We used radio and sonic telemetry on subadult Kemp's ridley turtles to investigate home-range size and habitat use in the coastal waters of west-central Florida from 1994 to 1996. We tracked 9 turtles during May-August up to 70 days after release and fou.ld they occupied 5-30 km2 foraging ranges. Compositional analyses indicated that turtles used rock outcroppings in their foraging ranges at a significantly higher proportion than expected. based on availability within the study area. Additionally. turtles used live bottom (e.g .• sessile invertebrates) and green macroalgae habitats significantly more than seagrass habitat. Similar studies are needed through'mt the Kemp's ridley turtles' range to investigate regional and stage-specific differences in habitat use. which can then be used to conserve important foraging areas

    Impact of swordfish fisheries on sea turtles in the Azores.

    Get PDF
    The surface longline fishery around the Azores targets swordfish (Xiphias gladius). Bycatch from this fishery includes loggerhead sea turtles (Caretta caretta) and occasionally leatherback sea turtles (Dermochelys coriacea) that are either hooked or entangled in the lines. Hooks are generally set at depths of 15-50 m and baited with squid, mackerel, or sometimes with shark meat. The size classes of loggerhead sea turtles caught ranged from 41.3 to 65.4 cm curved carapace length and constitutes the largest size class of loggerheads occurring in the Azores. The impact on this size class affects the survival of the southeastern United States (SEUS) population of loggerheads because the loggerheads from the Azores are primarily from SEUS rookeries. For one commercial longline boat, we observed that the mean capture of turtles per 1000 hooks by month ranged between a minimum of 0.04 in May and a maximum of 0.79 in July with a weighted mean catch of 0.27. October and November also registered high catch rates. Of 60 turtles recorded, 54 were hooked in the mouth, 3 in the esophagus, 1 in the eye, 1 in the flipper, and one was undetermined. The turtles that were caught were physically strong, except one that was weak and another dead. Total capture of loggerhead sea turtles is estimated to be 4190 for the entire fleet fishing in the Exclusive Economic Zone of the Azores during the swordfish season (May to December) of 1998. We strongly recommend that observer programs be continued because capture rates may vary among years and among fishing boats

    Compensatory growth in oceanic loggerhead sea turtles: response to a stochastic environment

    Get PDF
    Compensatory growth (CG, accelerated growth that may occur when an organism that has grown at a reduced rate as a result of suboptimal environmental conditions is exposed to better conditions) is considered an adaptation to variable en vironments. Although documented thoroughly under captive conditions, CG has rarely been studied in wild populations. In their first years of life, oceanic-stage loggerhead sea turtles (Caretta caretta) have relatively little control over their geographic position or movements and thus have an extremely stochastic lifestyle with great variation in food availability and temperature. This environmental variation results in variable growth rates. We evaluate somatic growth functions of oceanic-stage loggerheads from the eastern Atlantic based on skeletochronology that allowed us to assign age and cohort to each individual. We demonstrate CG in these turtles based on three different analytical approaches: changes in coefficients of variation in size-at-age, generalized additive model regression analyses of somatic growth, and linear regression of age-specific growth rates. As a result of CG, variation in size-at-age in these juvenile loggerheads is substantially reduced. Thus, size is a better predictor of age than expected based on variation in growth rates. CG decreases with age, apparently as loggerheads gain greater control over their movements. In addition, we have evaluated for the first time in wild sea turtles the time-dependent nature of somatic growth by distinguishing among age, year, and cohort effects using a mixed longitudinal sampling design with assigned-age individuals. Age and year had significant effects on growth rates, but there was no significant cohort effect. Our results address critical gaps in knowledge of the demog raphy of this endangered species.info:eu-repo/semantics/publishedVersio

    Green turtle somatic growth model: evidence for density dependence.

    Get PDF
    Abstract. The green turtle, Chelonia mydas, is a circumglobal species and a primary herbivore in marine ecosystems. Overexploitation as a food resource for human populations has resulted in drastic declines or extinction of green turtle populations in the Greater Caribbean. Attempts to manage the remaining populations on a sustainable basis are hampered by insufficient knowledge of demographic parameters. In particular, compensatory responses resulting from density-dependent effects have not been evaluated for any sea turtle population and thus have not been explicitly included in any population models. Growth rates of immature green turtles were measured during an 18-yr study in Union Creek, a wildlife reserve in the southern Bahamas. We have evaluated the growth data for both straight carapace length (SCL) and body mass with nonparametric regression models that had one response variable (absolute growth rate) and five potential covariates: sex, site, year, mean size, and recapture interval. The SCL model of size-specific growth rates was a good fit to the data and accounted for 59% of the variance. The body-mass model was not a good fit to the data, accounting for only 26% of the variance. In the SCL model, sex, site, year, and mean size all had significant effects, whereas recapture interval did not. We used results of the SCL model to evaluate a density-dependent effect on somatic growth rates. Over the 18 yr of our study, relative population density underwent a sixfold increase followed by a threefold decrease in Union Creek as a result of natural immigration and emigration. Three lines of evidence support a density-dependent effect. First, there is a significant inverse correlation between population density and mean annual growth rate. Second, the condition index (mass/(SCL) 3 ) of green turtles in Union Creek is positively correlated with mean annual growth rates and was negatively correlated with population density, indicating that the green turtles were nutrient limited during periods of low growth and high population densities. Third, the population in Union Creek fluctuated around carrying capacity during our study and thus was at levels likely to experience densitydependent effects that could be measured. We estimate the carrying capacity of pastures of the seagrass Thalassia testudinum, the major diet plant of the green turtle, as a range from 122 to 4439 kg green turtles/ha or 16-586 million 50-kg green turtles in the Caribbean. Because green turtle populations are probably regulated by food limitation under natural conditions, carrying capacity can serve as a baseline to estimate changes in green turtle populations in the Caribbean since preColumbian times and to set a goal for recovery for these depleted populations. Finally, we compare the growth functions for green turtle populations in the Atlantic and Pacific oceans. Not only does the form of the size-specific growth functions differ between the two regions (monotonic declining in the Atlantic and nonmonotonic in the Pacific), but also small juvenile green turtles in the Atlantic have substantially higher growth rates than those in the Pacific. Research is needed to evaluate the causes of these differences, but our results indicate that demographic parameters between ocean basins should only be extrapolated with great caution

    Activity patterns of Kemp's ridley turtles, Lepidochelys kempii, in the coastal waters of the Cedar Keys, Florida

    Get PDF
    Radio and sonic telemetry were used to investigate the tidal orientation, rate of movement (ROM), and surfacing behavior of nine Kemp's ridley turtles, Lepidochelys kempii, tracked east of the Cedar Keys, Florida. The mean of mean turtle bearings on incoming (48 ± 49 0) and falling (232 ± 41 0) tides was significantly oriented to the mean directions of tidal flow (37±9°, P<0.0025, and 234±9 0, P<0.005, respectively). Turtles had a mean ROM of 0.44±0.33 km/h (range: 0.004-1.758 km/h), a mean surface duration of 18± 15 s (range: 1-88 s), and a mean submergence duration of 8.4± 6.4 min (range: 0.2-60.0 min). ROM was negatively correlated with surface and submergence durations and positively correlated with the number of surfacings. Furthermore, ROMs were higher and surface and submergence durations were shorter during the day. Daily activities of turtles were attributed to food acquisition and bioenergetics
    • …
    corecore